Identification of Soil Texture Classes Under Vegetation Cover Based on Sentinel-2 Data With SVM and SHAP Techniques

نویسندگان

چکیده

Understanding the spatial variability of soil texture classes is essential for agricultural management and environment sustainability. Sentinel-2 data offer valuable vegetation information as proxies properties inference. However, applications them in classification are still limited. This study investigated usefulness predicting class using an interpretable machine learning (ML) strategy. Specifically, multitemporal images were used to get exhaustive cover information. Basic digital elevation map (DEM) derivatives stratum extracted. Three support vector machines with different input parameters (purely DEM stratum, purely Sentinel-2, plus stratum) developed. Moreover, order improve transparency black box ML models, novel SHapley Additive exPlanations (SHAP) method was applied interpret outputs analyze importance individual variables. Results showed that model all variables provided desirable performance overall accuracy 0.8435, F1-score 0.835, kappa statistic 0.7642, precision 0.8388, recall 0.8355, area under curve 0.9451. The performed much better than solely stratum. contributions explain about 17%, 41%, 28% sandy, loamy clayey soils, respectively. SHAP visualized decision process indicated elevation, red-edge factors critical classes. offered much-needed insights into mapping ML-assisted tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Narrow band based and broadband derived vegetation indices using Sentinel-2 Imagery to estimate vegetation biomass

Forest’s ecosystem is one of the most important carbon sink of the terrestrial ecosystem. Remote sensing technology provides robust techniques to estimate biomass and solve challenges in forest resource assessment. The present study explored the potential of Sentinel-2 bands to estimate biomass and comparatively analyzed of red-edge band based and broadband derived vegetation indices. Broadband...

متن کامل

the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance

با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...

Aircraft Identification Based on CS and SVM Techniques

For increasing radio frequency (RF) signal stealth effect, this paper presents a novel method to generate high-resolution range picture (HRRP) with compressed sensing (CS) technique, and using support vector machine (SVM) technique to separate different aircraft. Firstly, this paper constructs a suitable DFT frame depending on sparse representation of HRRP, and designs the sensing matrix with r...

متن کامل

Soil Moisture Estimation under Vegetation applying Polarimetric Decomposition Techniques

Polarimetric decomposition techniques and inversion algorithms are developed and applied on the OPAQUE data set acquired in spring 2007 to investigate their potential and limitations for soil moisture estimation. A three component model-based decomposition is used together with an eigenvalue decomposition in a combined approach to invert for soil moisture over bare and vegetated soils at L-band...

متن کامل

Cover Song Identification Based on Data Compression

We present a system for cover song identification. Our approach combines chord sequence estimation with a similarity metric called normalized compression distance.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing

سال: 2022

ISSN: ['2151-1535', '1939-1404']

DOI: https://doi.org/10.1109/jstars.2022.3164140